Ancient civilization. Is likely that prehistoric people began to count on their fingers first. The also have a variety of methods to identify the amounts and numbers of animals or number of days from the completion of the moon. And used the gravel and roving marks decade of wood and bone to represent numbers. And learn the use of forms regularly at their industry of pottery clay or carved arrowheads.

The athletes used in ancient Egypt by about 3000 years BC. M. The decimal system (a system of algorithms) without values for the home. The ancient Egyptians were the pioneers in engineering, and developed formulas for finding areas and volumes of some of the figures simple.

Egyptian mathematics and many applications ranging from surveying the land after the annual flooding of the complex calculations necessary to build the pyramids.

Was developed by the ancient Babylonians in 2100 BC. M sexagesimal system based on the number 60. This system is still in use until the present day to know the time, in hours, minutes and seconds. Historians do not know exactly how the Babylonians developed a system, and believe that the outcome of the use of No. 60 as a basis to determine the weight and other measurements. The system uses sixtieth important in astronomy to easily break the number 60 and the superiority of the Babylonians to the Egyptians in algebra and geometry. Important dates in Mathematics

3000 BC. M ancient Egyptians used the decimal system. And developed as well as engineering and technology area, but satisfied.

370 BC. M Iiodquiss Alkndosi known method of exhaustion, which paved the way for the expense of integration.

300 BC. M Euclid established a system using geometric reasoning.

787 m numbers appeared and zero points, the Decree in the form of an Arab in the works before they appear in the books Hindi.

830 m was the Arabs algebra this name first time.

835 m use the term deaf Algorithm for the first time to refer to the number of which is not the root of it.

888 m put athletes first Arab blocks analytic geometry using geometry to solve algebraic equations.

912 CE-Battani used the pocket instead of the tendon weakness in the measurement of arc angle for the first time.

In 1029 the Arabs used the athletes and three-dimensional plane geometry in the research of light for the first time in history.

1142 Odylard translator of Bath from the Arab parts of fifteen of the Book of Euclid's Elements, with the result that the works of Euclid has become well known in Europe.

Mid-twelfth century AD. Enter system setup Hindi Arabic to Europe as a result of the translation of a book-Khwarizmi in the account.

In 1252 Nasir al-Din al-Tusi drew attention for the first time Euclid errors in Parallels.

In 1397 invented the Ghayasuddin Kashi decimals.

In 1465 put Kulsadi Abu al-Hasan al-Qurashi for the first time symbols of algebra instead of words.

In 1514 used the Dutch mathematician Vander Hockey stoplights plus (+) and minus (-) for the first time in the algebraic expressions.

In 1533 founded the German mathematician Rigiomontaos, trigonometry as an independent for astronomy.

1542 A. Girolamo Cardano the first book in modern mathematics.

Enter Robert in 1557 Record reference equality (=) in mathematics, believing that nothing can be more equal than a pair of parallel lines.

1614 publication of John Napier discovered in the algorithms, which help to simplify calculations.

Publication in 1637 Rene Descartes discovered in analytic geometry, a decision that mathematics is the optimal model for the explanation.

The middle of the ninth decade of the seventh century Ashralmiladi. Deployment of both Sir Isaac Newton and Gottfried Wilhelm Leibniz independently discoveries in calculus.

In 1717 by Abraham Sharp calculates the approximate value of the ratio up to 72 decimal place.

In 1742 set what was known as Christine Juldbach Bhdsip Juldbach: that every even number is the sum of two prime numbers. This sentence is still open to mathematicians to prove the validity or wrong.

In 1763, enter Jspart Mougne Descriptive Geometry was even in 1795 working in the French military intelligence.

The beginning of the nineteenth century. The work of mathematicians Carl Frederick Goss and Janos Bolyai, Nicola Oba_evski to, and independently on the development of Engat not Euclidean.

Beginning of the third decade of the nineteenth century. Charles began Bbaj in the development of calculators.

In 1822 Jean Baptiste Fourier enter Fourier analysis.

Enter Ivarist in 1829 toured the theory of groups.

1854 publication of George Boley at its symbolic logic.

In 1881, enter Joshiah Willard Gibbs vector analysis in three dimensions.

The late nineteenth century. Georg Cantor developed the theory of groups and the mathematical theory of infinity.

In 1908 developed a method of Ernst Zirmelo Muslim groups to the theory of using ferries and seven are known to be non-Muslims.

1910-1913 AD deployment Alfred North Whitehead and Bertrand Russell book Principles of Mathematics and Jadla all the hypotheses that the sport can be extrapolated from a small number of Muslim women.

Began in 1912 for. Me. C. Berlur intuitive movement in mathematics of natural numbers as the basis for the mathematical structure that could be perceived intuitively.

In 1921 publication of Amy Nodhir Muslim way of reparation.

Beginning of the thirties of the twentieth century AD. Kurt proved argued that any system of Muslim contains sentences can not be substantiated.

In 1937 Alan Turing provided a description of the "Turing machine", a computer to an imaginary can solve all the issues of character calculation.

With the end of the fifties and in 1960 entered modern mathematics to schools in several states.

In 1974 Roger Penrose developed Thblitp composed of two types of aids non-recurrent patterns. Later it was discovered that this Althblitat which claims Thblitat Penrose reflects the structure of a new type of amorphous material and semi-crystalline.

Seventies of the twentieth century emerged computers based on the mathematical foundations, and used in commerce, industry and science.

In 1980 discussed a number of mathematicians Lafraktlip curves, a structure that can be used to represent the phenomenon Alheiolip.

Greeks and Romans. Greeks is the first scientists to discover the pure mathematics in isolation from the practical issues. Enter the Greeks logical conclusion and evidence, and have made significant progress this in order to reach a mathematical theory to build the organization. Traditionally, the philosopher Thales is the first to use the conclusion in the proof, and has primarily focused its attention on about 600 BC Engineering. M.

Explore the philosopher Pythagoras, who lived around 550 BC. M., The nature of numbers, and I think that everything can be understood in a language the total numbers or ratios. However, around the year 400 BC. M. Greeks discovered non-standard numbers (which are numbers that can not be expressed as a percentage of two numbers Kliyn), and realized that the ideas of Pythagoras were not integrated. In about 370 BC. M. Coined the Hellenic Astronomical Eodotxos Of Cnidus non-standard theory of numbers and developed a method of exhaustion, a method of determining the size of the area between the curves, paved the way for the expense of integration.

In about 300 BC. M Euclid has one of the leading mathematicians Greeks wrote a book elements, established a system of geometry based on the definitions of abstract and mathematical. During the third century BC circulated mathematician Archimedes method Greco exhaustion, using a polygon of 96 ribs to define a circle, which created a high-value precision approximate percentage of eBay (the ratio between the circumference and diameter). In around the year 150 BC. M. Use the Hellenic astronomer Ptolemy Engineering and trigonometry in astronomy to study the movement of planets, was this in its 13-part. Later known as the Palmjsti any greatest.

The Romans showed little interest in pure mathematics, but they used mathematical principles in areas such as trade, engineering, and matters of war.

Mathematics among the Arabs. Scientists Muslim Arabs translated and conservation of the ancient Greeks mathematicians as well as their contributions to innovation.

A mathematician and the Arab-Khwarizmi book about the year 210 AH, 825 CE, which he described the system of numeration by the developer in India. It has been used the decimal system values for the status, as well as zero, and became known as the Hindu-Arabic numerical system, as well as Algorithm A valuable book entitled algebra algebra book and interview, and took the English word from the title of this book.

In the mid-twelfth century AD Indian numerical system was introduced to Europe as a result of translation of the book Algorithm in the account to the Latin. And the dissemination of sports Italian Leonardo Fibonacci in 1202 a book of algebra enhanced the standing of this system. The solution to this system gradually replace the Romanian numbers in Europe.

The Flakio Arabs in the fourth century AH, the tenth century made major contributions in trigonometry. And use the Arab-Muslim physicist Ibn al-Haitham Abu Ali during the century atheist century AD Engineering in the study of light. At the beginning of the twelfth century AD A Persian poet and astronomer Omar Khayyam book an important role in algebra. And the development of the Persian mathematician Nasir al-Din al-Tusi in the thirteenth century AD creative mathematical model used in astronomy. See: Science at the Arabs and Muslims (Mathematics).

European Renaissance. Began Finders Europeans in the centuries XV and XVI searching for lines of new business overseas, which led to the application of mathematics in the trade and navigation, and played mathematics as well as the role of technical innovation, which applied artists of the Renaissance engineering principles and created a different system of drawing perspective written which gave deception in depth and the distance on the paintings of art, was the invention of printing machinery in the middle of the fourteenth century a significant impact on the rapid spread of information and the delivery of sports. In parallel with the European Renaissance as well as a major development in pure mathematics. In the 1533 publication of Eulerian name Rigiomantanos book it achieved independence as a separate Engineering for Astronomy. And won the French mathematician Francois Viet progress in algebra, this afternoon in his book which was published in 1591.

Mathematics and the scientific revolution. By the seventeenth century, contributed to the increased use of mathematics and the development of the experimental approach in a radical change in the advancement of knowledge, in the year 1543 A. Alegueloni astronomer Nicolaus Copernicus in astronomy book values between which the sun and not the earth is the center of the universe. The latest book, a growing interest in mathematics and its applications. Particularly in the study of movement of the Earth and other planets. In the 1614 publication of the Scottish mathematician John Napier discovered logarithms of the numbers which are used to simplify the complex calculations such as those used in astronomy. And found the Italian astronomer Galileo, who lived at the end of the sixteenth century and the beginning of the seventeenth century that it can study many kinds of planetary motion mathematically.

And the French philosopher Rene Descartes in his book, which was published in 1637, that mathematics is the optimal model of explanation, and creations of Engineering said the amount of analytical precision and certainty, which provide us with their mathematics.

And the foundations of French mathematician Pierre de Fermat, one of the scholars of the seventeenth century, the modern theory of numbers. Also found with the French philosopher Blaise Pascal probability theory. And helped the work of Fermat in micro quantities to form the basis of calculus.

In the mid-seventeenth century England discovered the mark Sir Isaac Newton's calculus. The first reference to the discovery of this in the book which was published in 1687. Discovered the sport and the German philosopher Wilhelm Gotafrin to Eebenin as well as independently calculus in the mid-1670, and the dissemination of discoveries between 1684 and 1686.

Developments in the eighteenth century AD. During the late seventeenth century and early eighteenth century provided a Bernoulli family Swiss family famous for many contributions in mathematics. Jacob Bernoulli has provided a pioneering work in analytic geometry, and books as well as on the theory of probability. And the work of his brother Johann as well as in analytic geometry, and mathematical astronomy and physics. Nicola and contributed to the progress of bin Johan probability theory, and use the Daniel Ben Johan mathematics to study the movement of fluids and vibration properties of tendons.

During the mid-eighteenth century, developed the Swiss Mathematical Leonard Euler calculus and that the processes of derivation and integration counterproductive consequences. And began the French mathematician Joseph Lagrange at the end of the eighteenth century, for developing the calculus on a stable footing, Breakfast calculus using the language of algebra instead of relying on geometric assumptions that were skeptical about it.

In the nineteenth century. Expanded public education quickly became an essential part of mathematics in university education. And published most of the important work of the mathematics of the nineteenth century as a reference. Wrote French mathematician Adrien-Marie Legendre at the end of the eighteenth century and the beginning of the nineteenth century, several references are important, and discussed in calculus, engineering, and the theory of numbers. And published in the thirties of the nineteenth century references important in the calculus of the French mathematician Augustin-Louis Cauchy, and won Kochi and the French mathematician Jean Baptiste Fourier significant progress in mathematical physics. And proved the German mathematician Carl Friedrich Gauss fundamental theorem of algebra, which read: root equation that every one in the least. And led its work in the complex numbers to the increased acceptance of it. Gauss developed in the twenties of the nineteenth century non-Euclidean geometries but never published his findings this, as the process of the Hungarian Janos Bolyai, and Russian Nikolai Obashviski and independently Engat not Euclidean. And published their findings about this in 1830 and developed the German Georg Friedrich Riemann in the mid-nineteenth century non-Euclidean geometries other.

With the beginning of the nineteenth century contributed to the work of the German mathematician Ferdinand Auguste Tedder in the development of the study engineering, and later called topology, which to study the properties of geometric shapes that do not change by discouraging or the tides. See: the topology.

In the late nineteenth century work of German mathematician Karl Theodor Vistrass to develop a solid theoretical foundation for the calculus. And developed his student Georg Cantor in the eighth and ninth decades of the nineteenth century theory of groups and mathematical theory of infinity. Much of the work in applied mathematics in the nineteenth century, in Britain, where he developed Charles Baibj Calculator primitive. George Boley and the development of a system of symbolic logic. The French mathematician Jules Henri Poincaré through the end of the nineteenth century contributions to the theory of numbers and celestial mechanics and topology and study of electromagnetic waves.

Solve for fun

Philosophies of mathematics in the twentieth century. Showed many mathematicians in the twentieth century philosophical concerns with the basics of mathematics. Used by some mathematicians logic to get rid of contradictions, and the development of mathematics from a group of Muslim (which basic sentences are correct).

Established philosophers and mathematicians Britain's Alfred North Whitehead and Bertrand Russell's philosophy of mathematics called logical. In their joint work Principles of Mathematics (1910-1913 AD), consisting of three parts, saw that the hypotheses Phrases mathematics could be derived from a small number of Muslim women.

The German mathematician David Hilbert, who lived at the beginning of the twentieth century systematic. The system systematically Menhjeon mathematics purely of law. And led the work of Hilbert spaces to study the complex dimensions of non-ending.

He led the Dutch mathematician Brouwer Joutsen at the beginning of the twentieth century, the doctrine of intuitive, and I think that people can intuitively understand the laws of mathematics (knowledge that does not get the reasoning or experience).

In the forties of the twentieth century demonstrated the Austrian mathematician Kurt argued that there is in any system of logical theories can not prove they are right or wrong Bmsalmat that system only. It was found that this is true even in the basic concepts of the account.

Mathematicians and error during the twentieth century major steps in the study of abstract mathematical structures. One of those clique structures, which is a grouping of elements may be numbers, and rules for the operation of these elements, Kaljma or beatings. And the theory of elite useful in several areas in mathematics and physics areas such as small particles.

Since in 1939, a group of mathematicians, mostly from the French published a series of valuable books under the name of Nicolas Bourbaki. And took this string-oriented abstract use the system and the theory of Muslim groups.

During the twentieth century emerged a new specialized areas of sports, including systems analysis, computer science and logic, made the basis for the advancement of computing power. On the other hand, enables mathematicians thanks to the computer to complete the complex calculations at high speed. Since the eighties of the twentieth century, popularized the use of computers based on mathematical models to study the weather and economic relations and many other systems.

The athletes used in ancient Egypt by about 3000 years BC. M. The decimal system (a system of algorithms) without values for the home. The ancient Egyptians were the pioneers in engineering, and developed formulas for finding areas and volumes of some of the figures simple.

Egyptian mathematics and many applications ranging from surveying the land after the annual flooding of the complex calculations necessary to build the pyramids.

Was developed by the ancient Babylonians in 2100 BC. M sexagesimal system based on the number 60. This system is still in use until the present day to know the time, in hours, minutes and seconds. Historians do not know exactly how the Babylonians developed a system, and believe that the outcome of the use of No. 60 as a basis to determine the weight and other measurements. The system uses sixtieth important in astronomy to easily break the number 60 and the superiority of the Babylonians to the Egyptians in algebra and geometry. Important dates in Mathematics

3000 BC. M ancient Egyptians used the decimal system. And developed as well as engineering and technology area, but satisfied.

370 BC. M Iiodquiss Alkndosi known method of exhaustion, which paved the way for the expense of integration.

300 BC. M Euclid established a system using geometric reasoning.

787 m numbers appeared and zero points, the Decree in the form of an Arab in the works before they appear in the books Hindi.

830 m was the Arabs algebra this name first time.

835 m use the term deaf Algorithm for the first time to refer to the number of which is not the root of it.

888 m put athletes first Arab blocks analytic geometry using geometry to solve algebraic equations.

912 CE-Battani used the pocket instead of the tendon weakness in the measurement of arc angle for the first time.

In 1029 the Arabs used the athletes and three-dimensional plane geometry in the research of light for the first time in history.

1142 Odylard translator of Bath from the Arab parts of fifteen of the Book of Euclid's Elements, with the result that the works of Euclid has become well known in Europe.

Mid-twelfth century AD. Enter system setup Hindi Arabic to Europe as a result of the translation of a book-Khwarizmi in the account.

In 1252 Nasir al-Din al-Tusi drew attention for the first time Euclid errors in Parallels.

In 1397 invented the Ghayasuddin Kashi decimals.

In 1465 put Kulsadi Abu al-Hasan al-Qurashi for the first time symbols of algebra instead of words.

In 1514 used the Dutch mathematician Vander Hockey stoplights plus (+) and minus (-) for the first time in the algebraic expressions.

In 1533 founded the German mathematician Rigiomontaos, trigonometry as an independent for astronomy.

1542 A. Girolamo Cardano the first book in modern mathematics.

Enter Robert in 1557 Record reference equality (=) in mathematics, believing that nothing can be more equal than a pair of parallel lines.

1614 publication of John Napier discovered in the algorithms, which help to simplify calculations.

Publication in 1637 Rene Descartes discovered in analytic geometry, a decision that mathematics is the optimal model for the explanation.

The middle of the ninth decade of the seventh century Ashralmiladi. Deployment of both Sir Isaac Newton and Gottfried Wilhelm Leibniz independently discoveries in calculus.

In 1717 by Abraham Sharp calculates the approximate value of the ratio up to 72 decimal place.

In 1742 set what was known as Christine Juldbach Bhdsip Juldbach: that every even number is the sum of two prime numbers. This sentence is still open to mathematicians to prove the validity or wrong.

In 1763, enter Jspart Mougne Descriptive Geometry was even in 1795 working in the French military intelligence.

The beginning of the nineteenth century. The work of mathematicians Carl Frederick Goss and Janos Bolyai, Nicola Oba_evski to, and independently on the development of Engat not Euclidean.

Beginning of the third decade of the nineteenth century. Charles began Bbaj in the development of calculators.

In 1822 Jean Baptiste Fourier enter Fourier analysis.

Enter Ivarist in 1829 toured the theory of groups.

1854 publication of George Boley at its symbolic logic.

In 1881, enter Joshiah Willard Gibbs vector analysis in three dimensions.

The late nineteenth century. Georg Cantor developed the theory of groups and the mathematical theory of infinity.

In 1908 developed a method of Ernst Zirmelo Muslim groups to the theory of using ferries and seven are known to be non-Muslims.

1910-1913 AD deployment Alfred North Whitehead and Bertrand Russell book Principles of Mathematics and Jadla all the hypotheses that the sport can be extrapolated from a small number of Muslim women.

Began in 1912 for. Me. C. Berlur intuitive movement in mathematics of natural numbers as the basis for the mathematical structure that could be perceived intuitively.

In 1921 publication of Amy Nodhir Muslim way of reparation.

Beginning of the thirties of the twentieth century AD. Kurt proved argued that any system of Muslim contains sentences can not be substantiated.

In 1937 Alan Turing provided a description of the "Turing machine", a computer to an imaginary can solve all the issues of character calculation.

With the end of the fifties and in 1960 entered modern mathematics to schools in several states.

In 1974 Roger Penrose developed Thblitp composed of two types of aids non-recurrent patterns. Later it was discovered that this Althblitat which claims Thblitat Penrose reflects the structure of a new type of amorphous material and semi-crystalline.

Seventies of the twentieth century emerged computers based on the mathematical foundations, and used in commerce, industry and science.

In 1980 discussed a number of mathematicians Lafraktlip curves, a structure that can be used to represent the phenomenon Alheiolip.

Greeks and Romans. Greeks is the first scientists to discover the pure mathematics in isolation from the practical issues. Enter the Greeks logical conclusion and evidence, and have made significant progress this in order to reach a mathematical theory to build the organization. Traditionally, the philosopher Thales is the first to use the conclusion in the proof, and has primarily focused its attention on about 600 BC Engineering. M.

Explore the philosopher Pythagoras, who lived around 550 BC. M., The nature of numbers, and I think that everything can be understood in a language the total numbers or ratios. However, around the year 400 BC. M. Greeks discovered non-standard numbers (which are numbers that can not be expressed as a percentage of two numbers Kliyn), and realized that the ideas of Pythagoras were not integrated. In about 370 BC. M. Coined the Hellenic Astronomical Eodotxos Of Cnidus non-standard theory of numbers and developed a method of exhaustion, a method of determining the size of the area between the curves, paved the way for the expense of integration.

In about 300 BC. M Euclid has one of the leading mathematicians Greeks wrote a book elements, established a system of geometry based on the definitions of abstract and mathematical. During the third century BC circulated mathematician Archimedes method Greco exhaustion, using a polygon of 96 ribs to define a circle, which created a high-value precision approximate percentage of eBay (the ratio between the circumference and diameter). In around the year 150 BC. M. Use the Hellenic astronomer Ptolemy Engineering and trigonometry in astronomy to study the movement of planets, was this in its 13-part. Later known as the Palmjsti any greatest.

The Romans showed little interest in pure mathematics, but they used mathematical principles in areas such as trade, engineering, and matters of war.

Mathematics among the Arabs. Scientists Muslim Arabs translated and conservation of the ancient Greeks mathematicians as well as their contributions to innovation.

A mathematician and the Arab-Khwarizmi book about the year 210 AH, 825 CE, which he described the system of numeration by the developer in India. It has been used the decimal system values for the status, as well as zero, and became known as the Hindu-Arabic numerical system, as well as Algorithm A valuable book entitled algebra algebra book and interview, and took the English word from the title of this book.

In the mid-twelfth century AD Indian numerical system was introduced to Europe as a result of translation of the book Algorithm in the account to the Latin. And the dissemination of sports Italian Leonardo Fibonacci in 1202 a book of algebra enhanced the standing of this system. The solution to this system gradually replace the Romanian numbers in Europe.

The Flakio Arabs in the fourth century AH, the tenth century made major contributions in trigonometry. And use the Arab-Muslim physicist Ibn al-Haitham Abu Ali during the century atheist century AD Engineering in the study of light. At the beginning of the twelfth century AD A Persian poet and astronomer Omar Khayyam book an important role in algebra. And the development of the Persian mathematician Nasir al-Din al-Tusi in the thirteenth century AD creative mathematical model used in astronomy. See: Science at the Arabs and Muslims (Mathematics).

European Renaissance. Began Finders Europeans in the centuries XV and XVI searching for lines of new business overseas, which led to the application of mathematics in the trade and navigation, and played mathematics as well as the role of technical innovation, which applied artists of the Renaissance engineering principles and created a different system of drawing perspective written which gave deception in depth and the distance on the paintings of art, was the invention of printing machinery in the middle of the fourteenth century a significant impact on the rapid spread of information and the delivery of sports. In parallel with the European Renaissance as well as a major development in pure mathematics. In the 1533 publication of Eulerian name Rigiomantanos book it achieved independence as a separate Engineering for Astronomy. And won the French mathematician Francois Viet progress in algebra, this afternoon in his book which was published in 1591.

Mathematics and the scientific revolution. By the seventeenth century, contributed to the increased use of mathematics and the development of the experimental approach in a radical change in the advancement of knowledge, in the year 1543 A. Alegueloni astronomer Nicolaus Copernicus in astronomy book values between which the sun and not the earth is the center of the universe. The latest book, a growing interest in mathematics and its applications. Particularly in the study of movement of the Earth and other planets. In the 1614 publication of the Scottish mathematician John Napier discovered logarithms of the numbers which are used to simplify the complex calculations such as those used in astronomy. And found the Italian astronomer Galileo, who lived at the end of the sixteenth century and the beginning of the seventeenth century that it can study many kinds of planetary motion mathematically.

And the French philosopher Rene Descartes in his book, which was published in 1637, that mathematics is the optimal model of explanation, and creations of Engineering said the amount of analytical precision and certainty, which provide us with their mathematics.

And the foundations of French mathematician Pierre de Fermat, one of the scholars of the seventeenth century, the modern theory of numbers. Also found with the French philosopher Blaise Pascal probability theory. And helped the work of Fermat in micro quantities to form the basis of calculus.

In the mid-seventeenth century England discovered the mark Sir Isaac Newton's calculus. The first reference to the discovery of this in the book which was published in 1687. Discovered the sport and the German philosopher Wilhelm Gotafrin to Eebenin as well as independently calculus in the mid-1670, and the dissemination of discoveries between 1684 and 1686.

Developments in the eighteenth century AD. During the late seventeenth century and early eighteenth century provided a Bernoulli family Swiss family famous for many contributions in mathematics. Jacob Bernoulli has provided a pioneering work in analytic geometry, and books as well as on the theory of probability. And the work of his brother Johann as well as in analytic geometry, and mathematical astronomy and physics. Nicola and contributed to the progress of bin Johan probability theory, and use the Daniel Ben Johan mathematics to study the movement of fluids and vibration properties of tendons.

During the mid-eighteenth century, developed the Swiss Mathematical Leonard Euler calculus and that the processes of derivation and integration counterproductive consequences. And began the French mathematician Joseph Lagrange at the end of the eighteenth century, for developing the calculus on a stable footing, Breakfast calculus using the language of algebra instead of relying on geometric assumptions that were skeptical about it.

In the nineteenth century. Expanded public education quickly became an essential part of mathematics in university education. And published most of the important work of the mathematics of the nineteenth century as a reference. Wrote French mathematician Adrien-Marie Legendre at the end of the eighteenth century and the beginning of the nineteenth century, several references are important, and discussed in calculus, engineering, and the theory of numbers. And published in the thirties of the nineteenth century references important in the calculus of the French mathematician Augustin-Louis Cauchy, and won Kochi and the French mathematician Jean Baptiste Fourier significant progress in mathematical physics. And proved the German mathematician Carl Friedrich Gauss fundamental theorem of algebra, which read: root equation that every one in the least. And led its work in the complex numbers to the increased acceptance of it. Gauss developed in the twenties of the nineteenth century non-Euclidean geometries but never published his findings this, as the process of the Hungarian Janos Bolyai, and Russian Nikolai Obashviski and independently Engat not Euclidean. And published their findings about this in 1830 and developed the German Georg Friedrich Riemann in the mid-nineteenth century non-Euclidean geometries other.

With the beginning of the nineteenth century contributed to the work of the German mathematician Ferdinand Auguste Tedder in the development of the study engineering, and later called topology, which to study the properties of geometric shapes that do not change by discouraging or the tides. See: the topology.

In the late nineteenth century work of German mathematician Karl Theodor Vistrass to develop a solid theoretical foundation for the calculus. And developed his student Georg Cantor in the eighth and ninth decades of the nineteenth century theory of groups and mathematical theory of infinity. Much of the work in applied mathematics in the nineteenth century, in Britain, where he developed Charles Baibj Calculator primitive. George Boley and the development of a system of symbolic logic. The French mathematician Jules Henri Poincaré through the end of the nineteenth century contributions to the theory of numbers and celestial mechanics and topology and study of electromagnetic waves.

Solve for fun

Philosophies of mathematics in the twentieth century. Showed many mathematicians in the twentieth century philosophical concerns with the basics of mathematics. Used by some mathematicians logic to get rid of contradictions, and the development of mathematics from a group of Muslim (which basic sentences are correct).

Established philosophers and mathematicians Britain's Alfred North Whitehead and Bertrand Russell's philosophy of mathematics called logical. In their joint work Principles of Mathematics (1910-1913 AD), consisting of three parts, saw that the hypotheses Phrases mathematics could be derived from a small number of Muslim women.

The German mathematician David Hilbert, who lived at the beginning of the twentieth century systematic. The system systematically Menhjeon mathematics purely of law. And led the work of Hilbert spaces to study the complex dimensions of non-ending.

He led the Dutch mathematician Brouwer Joutsen at the beginning of the twentieth century, the doctrine of intuitive, and I think that people can intuitively understand the laws of mathematics (knowledge that does not get the reasoning or experience).

In the forties of the twentieth century demonstrated the Austrian mathematician Kurt argued that there is in any system of logical theories can not prove they are right or wrong Bmsalmat that system only. It was found that this is true even in the basic concepts of the account.

Mathematicians and error during the twentieth century major steps in the study of abstract mathematical structures. One of those clique structures, which is a grouping of elements may be numbers, and rules for the operation of these elements, Kaljma or beatings. And the theory of elite useful in several areas in mathematics and physics areas such as small particles.

Since in 1939, a group of mathematicians, mostly from the French published a series of valuable books under the name of Nicolas Bourbaki. And took this string-oriented abstract use the system and the theory of Muslim groups.

During the twentieth century emerged a new specialized areas of sports, including systems analysis, computer science and logic, made the basis for the advancement of computing power. On the other hand, enables mathematicians thanks to the computer to complete the complex calculations at high speed. Since the eighties of the twentieth century, popularized the use of computers based on mathematical models to study the weather and economic relations and many other systems.